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SUMMARY: 
The First Order Reliability Method was applied to bridge flutter instability considering the uncertainties of the 
flutter derivatives and extreme wind speeds. To calculate the probability of failure by flutter, the wind speed and 
each value of the flutter derivatives are considered as a random variable. The critical flutter speed is obtained by 
solving the dynamic equilibrium equation. The Hasofer-Lind algorithm was used to solve the reliability problem and 
was applied to a suspension bridge, using a non-lineal structural model made in OpenSees. 
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1. INTRODUCTION 
Long-span bridges are some of the most challenging structures mankind has been able to build. 
They are remarkably slender and flexible; hence they are prone to suffer adverse effects caused 
by the wind. These kind of relevant constructions are possible nowadays due to two main facts: 
the appropriate mathematical formulations of wind induced phenomena as flutter or buffeting 
and the use of wind tunnel test to characterize the aeroelastic properties of bridges. Experiments 
with reduced models of full bridges allow observing the overall performance and sectional test of 
segments of bridge decks permit to obtain the aerodynamic coefficients and the flutter 
derivatives (FD) that will be used later on dynamic analysis under aeroelastic forces.  
 
The flutter response of the bridge is significantly influenced by these experimental functions, 
which relate the aeroelastic forces with the displacement of the bridge deck. Small changes in 
their values could significantly alter the critical wind speed. Due to the experimental nature of 
the data as well as the identification technique utilized to extract each function, these flutter 
derivatives contain uncertainty. In fact, certain studies (Sarkar et al., 2009; Kusano et al., 2018) 
observed considerable discrepancies in the results of wind-related variables obtained by tests in 
wind tunnels. In this work, a reliability analysis of a suspension bridge working with the wind 
speed and the values of the flutter derivatives as random variables was carried out using the 
FORM method to obtain the probability of failure of the structure. 
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2. NON-LINEAL STRUCTURAL MODEL AND FLUTTER ANALYSIS 
The finite element model of a suspension bridge and was made using free software OpenSees as 
shown in Fig. 1. OpenSees (McKenna, F. T., 1997) is an open-source, object-oriented software 
framework developed at UC Berkeley. The features of object-oriented programs make this 
software computationally efficient, flexible, extensible and portable.  
 
The bridge deck, the towers and the main cable were modelled using OpenSees beam-column 
elements with large-displacements. An initial strain material is defined to apply the axial forces 
in the main cables. The hangers are modelled with truss elements, and they are connected to the 
deck elements by transversally rigid links.  

 
Figure 1. Suspension bridge scheme and main cable construction. 

 
First, a structural model with only the elements of the main cables is used to obtain the final 
geometry using an iterative process. A precamber is assumed to obtain the position of the 
catenary and the initial stresses in the main cables. Then a non-linear static analysis with a load 
equal to the weight of the deck is carried out. The central vertical displacement is used as the 
precamber in the next iteration. This process finishes when the vertical displacement coincides 
with the precamber. The final structural model is defined with the last step position of the main 
cables considering the displacements and axial forces obtained and adding the rest of elements of 
the bridge; deck, hanger, links and towers. The natural modes and frequencies were obtained by 
a dynamic analysis taking into account second-order effects working with the final non-linear 
static analysis. 
 
Flutter phenomena is analyzed using the dynamic equilibrium equation considering self-excited 
forces that can be written as: 
 
𝐌�̈� + 𝐂�̇� + 𝐊𝐮 = 𝐟𝑎 = 𝐂𝑎�̇�+ 𝐊𝑎𝐮 (1) 
 
where M, C, K are the mass, damping and stiffness matrices and Ca, Ka are the aeroelastic 
damping and stiffness matrices. Flutter derivatives relate the aeroelastic forces and the 
displacements of the deck and can be written as: 
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where Ai

*, Hi
* and Pi

* (i=1,…,6) are the flutter derivatives. By multi-modal analysis Eq. (1) leads 
to a non-linear eigenvalue problem as follows: 
 
(𝐀 − µ𝐈)𝐰µ𝑒µ𝑡 = 0 (3) 
 
where matrix A depends on K, C, Ka and Ca matrices (Jurado and Hernández, 2001). This 
equation is solved as an eigenvalue problem using a multi-modal formulation (Jain et al., 1996; 
Jurado et al., 2011) where the critical flutter speed is obtained when the real part of one of the 
eigenvalues becomes null, indicating that the instability appears. 
 
 
3. RELIABILITY WITH UNCERTAINTIES IN WIND SPEED AND FLUTTER 
DERIVATIVES 
The first random variable considered in this study was the wind speed xW because its probability 
function is generally known through a wind study. In addition, each point of the principal flutter 
derivatives (A*

1-4, H*
1-4) was considered as normal random variables with the mean being the 

value obtained in wind tunnel test. Fig. 2 shows one flutter derivative for which each point is 
considered as normal random variable. 
 

 
Figure 2. Flutter derivative expressed as function of several random variables. 

 
With these random variables, the limit state function of the reliability analysis is defined as: 
 
𝑔(𝐗) = 𝑉𝑓(𝑥𝑖) − 𝑥𝑊     𝑖 = 1, . . . , 𝑛 (4) 
 
where Vf is the flutter wind speed, xi are de n random variables that represent the set of point that 
define the flutter derivatives and xW is the random variable of the wind speed. 
 
The first-order reliability method (FORM) was proposed by Hasofer and Lind (Hasofer and 
Lind, 1974) and is formulated as the minimum distance between the origin in the normalized U-
space to the failure surface g(U) = 0. The resulting optimization problem is: 
 
𝛽 = 𝑚𝑖𝑛�𝐔T𝐔  𝑠𝑠𝑠𝑠𝑒𝑠𝑠 𝑠𝑡   𝑔(𝐔) = 0 (5) 
 



where β is the reliability index, U are all the normalized random variables and the solution U* is 
denoted as the Most Probable Point of Failure (MPP). 
 
 
4. RELIABILTY RESULTS AND CONCLUSSIONS 
The reliability index was obtained using only one flutter derivative as a random variable, using 
the set of A*

1-4 functions, the set of H*
1-4 functions and the complete set of functions. For each 

case, a standard deviation of σ=15% and σ=30% of the mean value of the flutter derivative was 
considered. The wind velocity was described as an equivalent normal distribution xW = N(41.249; 
3.033). The results obtained are shown in Table 1. 
 
Table 1. Reliability results and probability of failure. 
Random variables Nº of variables σ = 0.15 σ = 0.30 

β Pf β Pf 
xW, A*

1 4 14.91 1.38E-50 8.67 2.15E-18 
xW, A*

2 5 11.45 1.04E-30 3.77 7.97E-05 
xW, A*

3 6 15.84 7.18E-57 15.79 1.61E-56 
xW, A*

4 6 16,32 3.48E-60 15.56 6,41E-55 
xW, H*

1 5 16.50 1.73E-61 16.26 8.15E-60 
xW, H*

2 6 16.65 1.51E-62 16.58 4.26E-62 
xW, H*

3 5 15.21 1.41E-52 7.09 6.38E-13 
xW, H*

4 6 16.50 1.70E-61 16.04 3.29E-58 
xW, A*

1, A*
2, A*

3, A*
4 18 6.62 1.76E-11 3.14 3.20E-04 

xW, H*
1, H*

2, H*
3, H*

4 19 14.16 7.18E-46 6.30 1.41E-10 
xW, A*, H* 37 5.40 3.33E-08 2.72 3.20E-03 
 
Results show that the probability of failure is higher when the standard deviation is increases. In 
addition, it can be seen that the A*

2 function has the most impact in the reliability index, 
obtaining a considerably lower β compared to the other sets of functions. When the complete set 
of flutter derivatives is used, the probability of failure increases significantly as more random 
variables are introduced in the analysis. 
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